Skip to content High contrast mode
Logo of Royal Holloway University of London

BScBiomedical Sciences

Tuition fee To be confirmed
More information

Expenses, accommodation, working etc.

royalholloway.ac.uk/..edical-sciences.aspx 

Overview

Gain a thorough grounding in the basis, prevention, diagnosis and treatment of disease by studying Biomedical Sciences at Royal Holloway, University of London.

This comprehensive programme will prepare you to join the ranks of biomedical researchers at the forefront of human health investigation. You’ll study biochemistry, physiology, cell biology, molecular biology and genetics before choosing from a range of optional modules in years 2 and 3, allowing you to specialise and follow your own particular interests.

As a 2nd and 3rd-year student you’ll receive specialist teaching from local health professionals, allowing you to learn more about subjects including neuroscience and clinical diagnosis of disease. You’ll have the option to embark on a lab-based individual research project in your 3rd year, joining a renowned research culture that has seen former students contribute to published scientific papers.

You’ll benefit from a recent £16 million investment in state-of-the-art equipment for bioinformatics, mass spectrometry and protein and gene sequencing, as well as our excellent imaging facilities, including confocal laser scanning microscopes for 3D live-cell imaging.

Through your studies you will gain an impressive portfolio of transferrable skills, making you an attractive prospect for potential employers. Invaluable lab experience, specialist learning and communication skills will help you to join our alumni in sectors including medical research, biotechnology and clinical trials coordination.

Programme structure

Year 1

Becoming a Bioscientist
In this module you will develop an understanding of key scientific concepts and effective science communication. You will learn how to process and critique different forms of information, and how to communicate science to both scientific and non-scientific audiences using diverse media, forms and methods. You will also examine ethical issues surrounding research and intervention.

Cell Biology and Evolution
In this module you will develop an understanding of prokaryotic and eukaryotic cell biology and the key functions of these structures and organelles. You will look at the origin of life and the principles of natural selection and evolution. You will also learn the practical technique involved in microscopy, including fixation techniques for the analysis of cell ultrastructure and aseptic techniques for bacterial culture.

Genetics
In this module you will develop an understanding of genes and their behaviour in individuals organisms, in populations, and at the molecular level within the cell. You will look cellular genetics with respect to mitosis, meiosis, inheritance and recombination, and consider the fundamentals of gene expression, its control, and DNA replication. You will examine genome organisation, transcription, and translation, and gain practical experience of using techniques in microscopy, including slide preparation for the observation of chromosomes.

Chemistry of Life
In this module you will develop an understanding of the fundamental chemistry of life processes and laboratory experiments. You will look at the basics of biological chemistry, including the chemical bonding and reactivity of important biomolecules, intermolecular forces, 3D structure and isomerism. You will analyse equilibria in acid/base biochemistry and solve related problems. You will also learn the basic biochemical lab techniques and carry out consequent data analysis.

Fundamental Biochemistry
In this module you will develop an understanding of the basics of biochemistry. You will look at some of the key techniques for biochemical analysis, including spectroscopy, and the fundamentals of protein structure. You will examine structure / fuction relationships in myoglobin, hemoglobin and the serine proteases, and learn to solve biochemical kinectics problems using the Michaelis-Menten equation. You will also consider how to solve thermodynamic problems, including equilibrium constants.

Protein Biochemistry and Enzymology
In this module you will develop an understanding of the main concepts of classic protein biochemistry including protein purification, enzyme kinetics, and enzyme structure. You will look at the basic principles behind a number of protein purification techniques, and consider basic enzyme kinetics using the Michaelis-Menten equation and derived methods to analyse kinetic data. You will examine the underlying biochemistry of a variety of analytical methods and their applications in research and diagnostics, gaining practical experience in performing some of these methods in laboratory practicals. You will also analyse the concept of biochemical buffers and learn how to make these from stock solutions.

Introductory Animal Physiology
In this module you will develop an understanding of the fundamental physiological systems that are required to maintain complex multicellular animals, specifically those involved in communication, transport and homeostasis. You will look at how systems and specialised organs have evolved and interact to obtain oxygen from the environment whilst maintaining optimal internal conditions for cellular function. You will consider the mechanisms, organisation, functions and integration of the nervous and endocrine systems to show how neural (somatic and autonomic) and hormonal signalling enable an animal to sense and respond both consciously (e.g. movement) and unconsciously (e.g. internal homeostasis). You will also examine the evolution of the closed circulatory system, separated into pulmonary and systemic circuits and driven by a four chambered heart, essential for the body-wide distribution of nutrients, oxygen and hormones, and for the removal of waste products.

Pathophysiology
In this module you will develop an understanding of specific human physiological systems in health and disease. You will look at how these systems function under normal conditions and consider the consequences of dysfunction and/or dysregulation resulting from genetic or acquired disease. You will consider how special sensory systems convert light, sound and position/movement into electrical signals that are transmitted to the brain and how our ability to sense the environment can be disrupted by diseased or damaged receptors. You will examine skeletal muscle function, how movement is controlled and sensed by the somatic nervous system and the causes and consequences of selected muscle and nerve disorders. You will also cover aspects of basic haematology, including the fluid and formed elements of blood and their roles in inflammation and the control of bleeding following vessel damage.

Year 2

Essential Human Physiology in Health and Disease
In this module you will develop an understanding of the function and integration of selected human physiological systems in normal physiology and disease. You will look at endocrine control in the human body, specifically the role of the hypothalamo-pituitary axis and the function and regulation of thyroid hormones. You will examine the organisation and integration of the nervous, cardiovascular, respiratory and systems and the principles of whole muscle physiology. You will also consider the composition and functions of blood and haemostasis, and the analysis and interpretation of physiological experiments.

Molecular Biology
In this module you will develop an understanding of the chemical structure of DNA and RNA, and how genes are organised and expressed. You will look at gene characterisation using recombinant DNA technology, and will consider DNA as a template for RNA synthesis. You will also become familiar with molecular biology techniques that are widely used in the life sciences, including the preparation and handling of purified DNA, restriction enzyme digestions, and polymerase chain reaction.

Molecular and Cellular Immunology
In this module you will develop an understanding of the mammalian immune systems at cellular and molecular levels, and how this is determined by antibody structure and function, the complement system, and the impact of immunoglobulin genetics. You will look at the role of T cells as effectors and regulators of immune responses, allergic reactions, transplant rejection, and the HIV virus and the pathogenesis of AIDS on the immune system. You will examine antipody antigen reaction techniques used in immunology, and consider the isolation and purification of lymphocytes, their morphology and abundance.

Neuronal and Cellular Signalling
In this module you will develop an understanding of the structure of the nervous system, including the main types of cells and the transmission of signals within neuronal networks. You will look at the process of synaptic transmission, including both electrical and chemical synapses. You will examine the different types of neurotransmitters and receptors and the mechanism of intracellular signaling, considering the role of second messenger signaling pathways. You will also enhance your practical skills, such as isolating and characterising synaptosomes and using these for the study of transmitter metabolism.

Pharmacology and Toxicology
In this module you will develop an understanding of drug-receptor interactions and the methods used to characterise drug action. You will look at the factors that influence drug action and drug toxicity within the body, examining the concepts of drug absorption, distribution, metabolism, and excretion. You will consider the pharmacology of a number of major drug classes, including antihypertensives, antidepressants, analgesics, general and local anaesthetics and drugs affecting the autonomic system.

Year 3

Individual Research Project
You will carry out an individual laboratory or theoretical investigation, supervised by an appropriate member of staff, who will provide guidance throughout. You will apply the knowledge and skills learned throughout your studies, and learn to organise data in a logical, presentable and persuasive way. You will produce a report, around 8,000 words in length, and will deliver an oral presentation with a summary of your findings.

Molecular Basis of Inherited Disease
In this module you will develop an understanding of the theory, technology, and clinical practice of human molecular genetics. You will look at a range of genetic disorders and inborn errors of metabolism such as muscular dystrophies, cystic fibrosis, haemophilia, lysosomal storage disorders, haemoglobinopathies, mitochondrial respiratory chain disorders, neurotransmitter synthesis disorders, lipoprotein diseases and primary immunodeficiencies. You will examine the concepts and significance of human inherited disease gene mapping and consider the importance of the human genome project.

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Career opportunities

Biomedical Sciences at Royal Holloway, University of London is structured to help students progress to further biomedical research. You’ll gain the invaluable skills and experience you need to work in a wide range of sectors, with a combination of lab experience and independent research making you an attractive prospect for potential employers.

The School of Biological Sciences is a close-knit community, with our alumni regularly returning to share their knowledge and experience with current students. Our alumni have gone on to careers in sectors including pharmaceuticals, biotechnology and medical research.

Apply now! Fall semester 2021/22
This intake is not applicable

We are currently NOT ACCEPTING applications from NON-EU countries, except Georgia and Serbia.

Application deadlines apply to citizens of: United States

Apply now! Fall semester 2021/22
This intake is not applicable

We are currently NOT ACCEPTING applications from NON-EU countries, except Georgia and Serbia.

Application deadlines apply to citizens of: United States