Skip to content High contrast mode
Logo of Royal Holloway University of London

BScBiochemistry

Tuition fee To be confirmed
More information

Expenses, accommodation, working etc.

royalholloway.ac.uk/..es/biochemistry.aspx 

Overview

Gain insights into the intricate, elegant workings of the building blocks of life in Biochemistry at Royal Holloway, University of London.

The course provides a comprehensive coverage of the principles of biochemistry, and includes a range of options that span the spectrum from medically-oriented biochemistry, through biochemistry in plants, to industrial applications of biochemistry.

You’ll gain invaluable laboratory experience across all three years of your degree. In year 3, you’ll complete an individual project, becoming part of our renowned research culture. The School of Biological Sciences was ranked 25th in the UK for influential research output by the Research Excellence Framework (REF) 2014, and our low student-to-staff ratio maximises your contact time with our internationally respected and enthusiastic academics. Many of our former students have contributed to published scientific papers.

Our campus is close to several sites of national scientific importance, including Windsor Great Park and the Millennium Seed Bank, while our on-site glasshouses, marine and freshwater aquaria and plant and animal cell culture facilities provide opportunities for rewarding independent study.

The skills and experience you’ll gain studying Biochemistry will make you an attractive prospect to employers. A combination of laboratory experience, ground-breaking research and a wide range of additional skills and competencies have helped our graduates find work in fields from forensic medicine to biotechnology. Pursue your passion for the fascinating principles of biochemistry and graduate with the skills and qualifications you need to find success in your chosen field.

Programme structure

Year 1

Becoming a Bioscientist
In this module you will develop an understanding of key scientific concepts and effective science communication. You will learn how to process and critique different forms of information, and how to communicate science to both scientific and non-scientific audiences using diverse media, forms and methods. You will also examine ethical issues surrounding research and intervention.

Cell Biology and Evolution
In this module you will develop an understanding of prokaryotic and eukaryotic cell biology and the key functions of these structures and organelles. You will look at the origin of life and the principles of natural selection and evolution. You will also learn the practical technique involved in microscopy, including fixation techniques for the analysis of cell ultrastructure and aseptic techniques for bacterial culture.

Genetics
In this module you will develop an understanding of genes and their behaviour in individuals organisms, in populations, and at the molecular level within the cell. You will look cellular genetics with respect to mitosis, meiosis, inheritance and recombination, and consider the fundamentals of gene expression, its control, and DNA replication. You will examine genome organisation, transcription, and translation, and gain practical experience of using techniques in microscopy, including slide preparation for the observation of chromosomes.

Chemistry of Life
In this module you will develop an understanding of the fundamental chemistry of life processes and laboratory experiments. You will look at the basics of biological chemistry, including the chemical bonding and reactivity of important biomolecules, intermolecular forces, 3D structure and isomerism. You will analyse equilibria in acid/base biochemistry and solve related problems. You will also learn the basic biochemical lab techniques and carry out consequent data analysis.

Fundamental Biochemistry
In this module you will develop an understanding of the basics of biochemistry. You will look at some of the key techniques for biochemical analysis, including spectroscopy, and the fundamentals of protein structure. You will examine structure / fuction relationships in myoglobin, hemoglobin and the serine proteases, and learn to solve biochemical kinectics problems using the Michaelis-Menten equation. You will also consider how to solve thermodynamic problems, including equilibrium constants.

Protein Biochemistry and Enzymology
In this module you will develop an understanding of the main concepts of classic protein biochemistry including protein purification, enzyme kinetics, and enzyme structure. You will look at the basic principles behind a number of protein purification techniques, and consider basic enzyme kinetics using the Michaelis-Menten equation and derived methods to analyse kinetic data. You will examine the underlying biochemistry of a variety of analytical methods and their applications in research and diagnostics, gaining practical experience in performing some of these methods in laboratory practicals. You will also analyse the concept of biochemical buffers and learn how to make these from stock solutions.

Year 2

Bioenergetics, Biosynthesis and Metabolic Regulations
In this module you will develop an understanding of the major pathways for electron transfer and energy conversion in living systems. You will look at how energy is utilised in biosynthesis, and the role of enzymes, coenzymes and metabolic intermediates. You will examine the priniciple of flux control and metabolic regulation and the mechanisms that balance the activity of key pathways to physiological demands. You will also consider the main features of human energy metabolism and their relationship to obesity and diabetes, and analyse the importance of protein glycosylation and how protein glycans are biosynthesised.

Protein Structure and Function
In this module you will develop an understanding of protein structure, protein folding in vivo, and the principles of protein engineering and protein-protein interaction. You will look at methods for the separation, purification, detection, and structural analysis of proteins, gaining practical experience in using techniques such as SDS-PAGE and Western blotting. You will also examine mechanisms of enzyme catalysis and regulation.

Molecular Biology
In this module you will develop an understanding of the chemical structure of DNA and RNA, and how genes are organised and expressed. You will look at gene characterisation using recombinant DNA technology, and will consider DNA as a template for RNA synthesis. You will also become familiar with molecular biology techniques that are widely used in the life sciences, including the preparation and handling of purified DNA, restriction enzyme digestions, and polymerase chain reaction.

Physical Biochemistry for Life Scientists
In this module you will develop an understanding of the behaviour of macromolecules in solution, looking at the key analytical methods used for their study. You will become familiar with a range of spectroscopic techniques, including fluorescence, phosphorescence and circular dichroism. You will examine the phenomena of surface plasmon resonance measurements, interferometry, and biocalorimetry, and look at the principles of scanning force microscopy (SFM) and atomic force microscopy (AFM). You will also consider the importance of the emerging field of nanobiotechnology.

Plant Biochemistry and Biosynthesis
In this module you will develop an understanding of the key energy-generating reaction of photosynthesis and how storage polysaccharides are produced by plants from carbon dioxide and water. You will look at the key biochemical aspects of the nitrogen biosphere cycle and how plants assimilate nitrogen and produce aromatic amino acids. You will examine molecular targets for herbicides in plants, approaches to weed control management, and sustainable nitrogen for agriculture. You will consider the major groups of secondary plant compounds and their roles in plant function and chemical ecology. You will also integrate knowledge of biochemistry, metabolic pathways, chemical ecology, modern agriculture and the use of plant-derived compounds in the pharmaceutical industry, and analyse their importance for strategies to address global challenges.

Year 3

Individual Research Project
You will carry out an individual laboratory or theoretical investigation, supervised by an appropriate member of staff, who will provide guidance throughout. You will apply the knowledge and skills learned throughout your studies, and learn to organise data in a logical, presentable and persuasive way. You will produce a report, around 8,000 words in length, and will deliver an oral presentation with a summary of your findings.

Medical Biochemistry
In this module you will develop an understanding of human metabolism, phsyiology and immunology. You will look at the main features of human energy metabolism, including nutrition, the importance of vitamins, and the biochemical basis of specific disorders, such as diabetes, hypercholesterolemia and obesity. You will consider the disorders associated with lipid dysfunction and examine other metabolic disorders such as hypercholesterolemia.

Functional Genomics, Proteomics and Bioinformatics
In this module you will develop an understanding of the structure-function relationships in proteins, and how new technologies are being used to exploit protein sequence data. You will look at how genome-wide analyses can be used to examine regulation in biological systems, and consider modes of specific recognition in mediating protein interactions.

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Career opportunities

Study Biochemistry at Royal Holloway, University of London and gain the skills and experience you need to move into the workplace. 90% of our graduates are in work or higher education within six months of graduating, and a close graduate network means you can draw on the knowledge and connections of illustrious visiting alumni.

You’ll gain invaluable laboratory experience throughout the duration of your studies and you can choose to complete a lab-based research project in your third year, helping to develop the transferrable skills employers look for in successful candidates. Royal Holloway Biological Sciences alumni have gone on to careers in sectors including medical research, forensic science, clinical trials coordination and biotechnology.

Apply now! Fall semester 2021/22
This intake is not applicable

We are currently NOT ACCEPTING applications from NON-EU countries, except Georgia and Serbia.

Application deadlines apply to citizens of: United States

Apply now! Fall semester 2021/22
This intake is not applicable

We are currently NOT ACCEPTING applications from NON-EU countries, except Georgia and Serbia.

Application deadlines apply to citizens of: United States